Aarhus Universitets segl

Livet i søer, vandløb og hav

Akvatiske økosystemer spilder en central rolle for Jordens biodiversitet og for Jordens kulstof- og kvælstofkredsløb, og de er essentielle for menneskers sundhed og velfærd. Aktuelt står de akvatiske økosystemer overfor en række udfordringer, som truer økosystemernes strukturer og funktioner. Det drejer sig blandt andet om forurening, overfiskeri, invasive arter og ødelæggelse af habitater. Viden om og forståelse af de akvatiske økosystemer og deres funktioner er afgørende for at sikre en bæredygtig fremtid for økosystemerne selv og for mennesker, som lever af dem.

På Institut for Biologi undersøger vi, hvordan akvatiske organismer reagerer på miljøfaktorer, og hvordan de interagerer med andre arter. Desuden kortlægger vi økosystemernes biodiversitet samt energi- og næringsstrømme igennem dem. Vi studerer en bred vifte af økosystemer, fra tropiske i syd til polare egne i nord, og har et særligt fokus på arktiske økosystemer. Vores forskning bygger på feltstudier, laboratorieundersøgelser og matematisk modellering og er ofte multidisciplinær med kombinationer af biologi, kemi, fysik, geofysik og ingeniørvidenskab. Vores mål er at opbygge viden, som kan bruges til at genoprette og bevare akvatiske økosystemer, og til faglig understøttelse af myndigheders og politikeres arbejde.


Kontakt en forsker indenfor Livet i søer, vandløb og hav

Forskningsområder:

  • Planters økofysiologi
  • Fænotypisk plasticitet
  • Planters respons på globale forandringer
  • Intraspecifik variation

Jeg er biolog med speciale i plantebiologi. Jeg forsker i planters samspil med miljøet, med særlig fokus på tilpasninger til klimaforandringer og vegetationens rolle for kulstofophobning i økosystemer.

Min forskning undersøger især planters intraspecifikke variation, altså forskelle indenfor den samme art, og deres betydning for tilpasninger til forskellige geografiske områder. Her er fænotypisk plasticitet et centralt begreb jeg arbejder med: et individs evne til at tilpasse sig biokemisk, morfologisk og fysiologisk til forskellige miljøbetingelser.

Nogle af de centrale spørgsmål, min forskning forsøger at svare på, er: Hvilke mekanismer skaber variation indenfor en art? Er disse mekanismer forskellige i endemiske eller kosmopolitiske plantearter? Hvilken rolle spiller fænotypisk plasticitet for planters tilpasningsevne til globale forandringer?

Jeg forsker desuden i, hvordan vegetationen i kystnære og ferske vådområder påvirker disse økosystemers funktioner. Jeg indgår i et omfattende internationalt samarbejde som undersøger vådområder over hele kloden. Blandt andet ser jeg på, om sumpplanters biomasse kan bruges som byggemateriale eller bioenergi.

Min forskning er et vigtigt link i vores forsøg at imødegå klimaforandringer, da intakte vådområder og vegetation med visse funktionelle egenskaber kan fungere som naturbaserede løsninger for at øge kulstofoptag fra atmosfæren.

Forskningsområder

Planters økofysiologi
Fotosyntese
Plantefysiologi
Akvatiske økosystemer
Emissioner

Links til andre online profiler

Google Scholar - publons - LinkedIn - ResearchGate

Peter Funch is specialised in evolutionary zoomorphology with focus on expanding our knowledge on animal evolution, systematics, symbiosis, morphology, and life cycles. His comparative studies using various biological imaging techniques on the development, organization and function of organ systems and life cycles have resulted in the discovery and description of two new animal phyla.

Forskningsområder:

  • Zoologi
  • Biogeografi
  • Dyrenes evolution
  • Bioimaging

Forskningsområder

Biodiversitet
Zoologi
Biogeografi
Evolution
Dyrerigets evolution
Fylogeografi
Dyr
hvirvelløse dyr
meiofauna
bjørnedyr
hjuldyr
ringbærere
dolkhaler
livscyklus
Xenoturbella
Biologi
Klimaændringer

Link to my CV

MY RESEARCH

I study the processes that lead to change in fish populations - in order to improve predictions of how fish populations will respond to human exploitation and climate change.


EXAMPLES OF RESEARCH PROJECTS

Fish earstones (otoliths) contain information about the age of fish but also their metabolic rates and their diets. By analyzing carbon and nitrogen isotopes of earstone protein, I examine changes in diets of fishes driven by fishing and climate change over the last 100 years. I also analyze carbon isotopes in the earstones to gain knowledge of the metabolism of fish and how the metabolism is influenced by changes in ocean temperatures, food and stress factors.


IMPORTANT METHODS AND RESULTS

My research has shown that the long-term catch from a fish population is determined by its position in the food web, and that the position changes in relation to climatic factors.

I have developed a method to document historic and contemporary food webs by analyzing earstones from research cruises, museum archives and kitchen middens. This enables me to map out positions of fish in the food web with very high temporal and spatial resolution, and to explore how food webs change in relation to climate and fisheries. The results show that there have been massive changes in the fish diet during the last 80 years as a direct response to climate changes and fishing.

Furthermore, my analysis of fish metabolic rates show that the increasingly warmer temperatures in the coastal habitats of juvenile cod increases their metabolic rate to a point where they can no longer survive in these important habitats.


COLLABORATION

I collaborate with a wide range of reseachers from physical oceanography over animal physiologys to molecular ecology.
The new methods I have developed has been developed in collaboration with researchers from Taiwan, France and UK.


OTHER PROFILES

Twitter @petergronkjaer

Grønkjær FishEco Lab

Google scholar

Linkedin

 

Forskningsområder

Conservation og naturbevarelse
Dyrs tilpasning til miljøet
Ferskvandsbiologi
Fisk og fiskebiologi
Havbiologi
Klimaændringer
Marin økologi
Marinbiologi
Oceanografi
Populationsbiologi
Respiration

Jeg er professor ved Institut for Biologi, Aarhus Universitet. Mit forskningsfelt er populationsgenetik/populationsgenomik og evolutionsbiologi. Jeg analyserer genetiske og genomiske data med henblik at afklare, hvordan populationer er forbundet med hinanden, hvordan deres demografiske historie har udviklet sig over kortere og længere tidsrum, og hvordan de genetisk er tilpasset deres lokale miljøer. I særdeleshed er jeg interesseret i, hvordan populationer er tilpasset nuværende klimaforhold og hvordan de genetisk kan tilpasse sig de igangværende klimaforandringer. I den forbindelse interesserer jeg mig også for epigenetik, dvs. modifikationer af DNA'et som ikke ændrer selve den genetiske kode, men ikke desto mindre har store tilpasningsmæssige konsekvenser for organismer. Jeg er desuden stærkt interesseret i indavl, hvor helt nye genomiske analysemetoder gør det muligt at analysere indavl i vilde populationer. Jeg undersøger, hvordan indavl påvirker truede populationers og arters risiko for at uddø, og hvordan man aktivt kan forøge deres chancer for at overleve ved at tilføre ny genetisk variation fra andre populationer ("genetic rescue").

Min forskning fokuserer på fisk (og især ål), pattedyr, fugle, ferskvandsmuslinger og insekter. 

Forskningsområder:

  • Populationsgenetik og -genomics
  • Conservationgenetik og -genomics
  • Tilpasning
  • Artsdannelsesmekanismer
  • Epigenetik

Forskningsområder

Genetik
DNA
Population genomics
Epigenetics
Fisk og fiskebiologi
Conservation og naturbevarelse
Biodiversitet
Klimaændringer
Evolution


Link til mit CV

MY RESEARCH

My main research is on the ecology of benthic animals in estuaries and intertidal areas (Wadden Sea).

I have a general interest in processes that control the structure and dynamics of benthic populations and communities. I have a particular interest in: i) parasites in marine host populations and ii) the functional consequences of invasive species in shallow water ecosystems.

 

EXAMPLES OF RESEARCH PROJECTS

i) My studies of parasites in marine intermediate hosts deal with host effects, transmission-ecology and life-cycle plasticity. Mudsnails, mudshrimps and cockles are my favored experimental organisms.

ii) Currently we are studying the functional role of two invasive Asian Shore Crabs and how the Pacific Oyster impact the Wadden Sea ecosystem. 

 

IMPORTANT METHODS AND RESULTS

My studies have contributed to an understanding of the impact of parasites on host populations (shellfish and amphipods) and on factors controlling the transmission of parasite larvae. Other studies have contributed to our knowledge of the genetic diversity of cockles and some of their parasite species along latitudinal gradients. Studies of invasive marine species have improved our knowledge of their ecological importance in their new ecosystem.

 

COLLABORATION

I have collaborated with colleagues from marine research institutions from abroad (France, Germany, Netherland, Spain, Portugal, Vietnam) either through national or international programs. 

Forskningsområder

Bunddyr
Havbiologi
Marin økologi
bestandsdynamik
bunddyrs økologi
invasive arter
makroparasitter
vækst og produktion

I am an associate professor in molecular geomicrobiology. My research overall focuses on understanding the ecology and evolution of microorganisms inhabiting the seabed as well as engineered systems. My expertise bridges the use of more basic molecular tools with omics and bioinformatics approaches which I integrate with microbial physiology and biogeochemical approaches.

Publications @ Google Scholar

Geomicrobiology
The microorganisms present the seabed constitute up to one third of global living biomass, they key players in the global carbon and sulfur cycles and thus affect both ocean and atmospheric chemistry and Earth´s climate. However, the subsurface seabed is among the least explored environments on our planet and the identities, evolution and lifestyles of the microorganism populating this vast microbial ecosystem remain poorly understood.

Active projects

  • Cellular ultrastructure of Asgard archaea, the putative missing link in the evolution from prokaryotes to eukaryotes
    • Funded by Independent Research Fund Denmark. DFF2. 2024-2027. PI.
  • Biofouling and scaling eradication by salinity alteration in water desalination
    • Funded by Innovation Fund Denmark. Grand Solutions. 2023-2026. Co-PI.
  • Seabed methane cycling by reversible electron transfer between archaea and bacteria
    • Funded by Independent Research Fund Denmark. DFF2. 2022-2025. Co-PI.
  • Anaerobic methane oxidation – an overlooked barrier to methane emissions from freshwater systems
    • Funded by Independent Research Fund Denmark. DFF1. 2024-2026. Co-PI.

Teaching
I teach the following courses at Department of Biology

  • Microbiology for Biologists
  • Microbiology for Molecular Biologists
  • Microbial Physiology and Identification
  • Microbial Element Cycling and Population Ecology

Forskningsområder:

  • Geomikrobiologi
  • Bioinformatik
  • Molekylær mikrobiel økologi

Forskningsområder

Biodiversitet
Genetik og molekylær evolution
Genomanalyse
Mikrobiologi
Molekylær mikrobiologi

Link til CV


MY RESEARCH

My main research interest is to use advanced sensing tools to answer questions in biological, environmental and medical research. Either I use available sensors to address biological questions, or if the needed tools are not available, I develop them. 


EXAMPLES OF RESEARCH PROJECTS

From soil to marine biofilms, bacteria drive the cycling of nutrients in the environment. The chemical conditions present determine the processes. With optical sensors I can make those chemical conditions visible in 2D. 

IMPORTANT METHODS AND RESULTS

I work on developing and using both optical and electrochemical sensors. A main difference to other labs around the world is that we develop sensors to be functional in complex natural environments and to sense at a high spatial (<100µm) and temporal (<5sec) resolution.  

COLLABORATION

As a trained chemist working at a Biology department, I collaborate across disciplines every day. I have a strong national and international research network.

OTHER PROFILES

Forskningsområder

Sensor technologies
Biomonitering
Analytisk kemi
Oxygen og ilt
Miljøkemi

Link til mit CV

MY RESEARCH

Sea ice ecology and the sea ice as an ecosystem with a variety of microorganisms living and thriving inside the sea ice as algae, bacteria, virus and fungi. What are their physiological adaptations to this extreme environment inside the ice where it’s cold, dark and high saline.

EXAMPLES OF RESEARCH PROJECTS

Sea ice extent is decreasing in the Arctic and in near future there is no sea ice in summer.

Will these new conditions increase primary production in central Arctic Ocean, and thereby also increase the fisheries in the Arctic Ocean?

IMPORTANT METHODS AND RESULTS

We have applied new image based methods for measuring primary production in sea ice and taken a step further with the development of hyperspectral cameras for under ice distribution and pigment compositions of ice algae.

COLLABORATION

Development of image based and hyper spectral methods for mapping sea ice algae has been in collaboration with researchers from New Zealand, Australia, and US.

OTHER PROFILES

LinkedIn profile

Researchgate profile

Forskningsområder

Marin økologi
Oceanografi
Oceanografi
Alger
Algers fysiologi
Tilpasning
Koncentrationer og biomasse
Rumlig fordeling
Ekstreme miljøer
Halophiler
Thermophiler

Lab home page

http://www.marinebioacoustics.com

Sensory physiology of echolocating mammals and their prey. Functional anatomy, dynamics and biomechanics of odontocete sound production. Biosonar, signal properties, prey detection and auditory scene analysis of bats and toothed whales. Hearing and particle motion detection in aquatic organisms. Ecophysiology, behavior, energetics and foraging ecology of deep diving odontocetes and bats. Acoustic interactions between toothed whales & bats and their prey. Physiological, behavioral and energetic effects of man made noise on marine mammals. Controlled exposure and playback experiments for mitigative purposes. Passive acoustic monitoring and underwater sound communication and sound transmission.

International collaborators

Peter L. Tyack and Mark Johnson (U. of St. Andrews, Scotland), Natacha Aguilar de Soto (University of La Laguna, Tenerife), Walter Zimmer (NATO Undersea Research Center, La Spezia, Italien), Lars Bejder, Whitlow Au and Paul Nachtigall (Hawaii Institute for Marine Biology, USA), Sam Ridgway (Space and Warfare Systems Center, San Diego, USA), Roger Hanlon (Marine Biological Laboratory, Woods Hole, USA). Jeremy Goldbogen (Stanford university, US).

 

Forskningsområder

Bioakustik
Biofysik
Conservation og naturbevarelse
Dyrefysiologi
Dyrs tilpasning til miljøet
Hvaler
Dyr
Pattedyr


MY RESEARCH

I investigate the main factors that regulate macronutrients cycling in aquatic systems. I am particularly fascinated by the activity of electro-active bacteria, their geochemical impact, diversity and their potential technological application.

EXAMPLES OF RESEARCH PROJECTS

By mediating electric currents, filamentous (“cable”) bacteria can significantly alter geochemical reactions in sediments. In an EU-funded project, I explored how cable bacteria impact benthic nitrogen cycling and their distribution and diversity in the Baltic Sea.

IMPORTANT METHODS AND RESULTS

I apply a broad range of sensing and isotopic techniques.
Our results show that cable bacteria stimulate nitrate reduction to ammonium, thereby contributing to the recycling of nitrogen in aquatic systems.
We also demonstrated that electrically connecting the surface sediment with the deeper layers by means of biological or inert conductors helps to accelerate hydrocarbon degradation. 

COLLABORATION

I maintain collaborations with researchers in the fields of marine and freshwater biogeochemistry, microbiology, aquatic ecology and biotechnology. My network includes researchers from Sweden, Belgium, Italy, and Germany.

OTHER PROFILES

Forskningsområder

Kystnære vande
Kvælstof
Fosfor
Ferskvand
Mikrobiel økologi
Elektrokemi
Sensor technologies


Link til mit CV

MY RESEARCH

My research focus on coastal ecology, especially the role of parasites in determining structure and function of coastal ecosystems.


EXAMPLES OF RESEARCH PROJECTS

One of my projects aimed at unravelling the combined effect af parasitism and climate change on the diversity of the intertidal community of plants and animals. Yet another project elucidated how marine parasites affect the functional role of an ecosystem engineer in a temperature-dependent manner.

IMPORTANT METHODS AND RESULTS

My research methods usually involve experimental approaches, both in the laboratory and under field conditions, by manipulation of constructed micro- and mesocosms.

 

COLLABORATION

My research is most often conducted in collaboration with international scientists from a wide range of countries (e.g. Germany, Holland, France, Russia, USA, New Zealand) but of course also together with Danish colleagues (AU, KU, DTU).

OTHER PROFILES

ResearchGate
Researcher ID   
Google Scholar   
Scopus ID

 

Forskningsområder

Biodiversitet
Bunddyr
Havbiologi
Klimaændringer
Marinbiologi
Populationsbiologi
Økologi
Marin økologi
Vådområder
Tidevandsområder
Økologiske netværk og interaktioner
Parasitter


Link til mit CV


MY RESEARCH

I describe, explain and predict variability in ocean life across time, space and species. I use quantitative ecology to identify the mechanisms behind the variability, disentangling environmental vs. human and plastic vs. adaptive factors, to explain how climate signals propagate through an ecosystem.


EXAMPLES OF RESEARCH PROJECTS

Understanding the biological fate of environmental signals requires us to explain variability in both biomass (a combination of number and size) as well as the overlap among players in space and time. As such, our research covers a range of topics aimed at explaining variability in abundance, size, connectivity, life history timing, distribution, and feeding for life in the ocean. 


IMPORTANT METHODS AND RESULTS

Research questions are often ecologically based with natural and necessary connections to physiology, evolutionary biology, resource management, oceanography, and climate science. This interdisciplinary approach allows us to develop theory-based tools to both explain observed patterns and predict dynamics for future ocean life given potential environmental as well as biological (adaptive) changes.


COLLABORATION